The complexity of flow on fat terrains and its i/o-efficient computation
نویسندگان
چکیده
We study the complexity and the I/O-efficient computation of flow on triangulated terrains. We present an acyclic graph, the descent graph, that enables us to trace flow paths in triangulations i/o-efficiently. We use the descent graph to obtain i/o-efficient algorithms for computing river networks and watershed-area maps in O(Sort(d + r)) i/o’s, where r is the complexity of the river network and d of the descent graph. Furthermore we describe a data structure based on the subdivision of the terrain induced by the edges of the triangulation and paths of steepest ascent and descent from its vertices. This data structure can be used to report the boundary of the watershed of a query point q or the flow path from q in O(l(s) + Scan(k)) i/o’s, where s is the complexity of the subdivision underlying the data structure, l(s) is the number of i/o’s used for planar point location in this subdivision, and k is the size of the reported output. On α-fat terrains, that is, triangulated terrains where the minimum angle of any triangle is bounded from below by α, we show that the worst-case complexity of the descent graph and of any path of steepest descent is O(n/α), where n is the number of triangles in the terrain. The worst-case complexity of the river network and the above-mentioned data structure on such terrains is O(n/α). When α is a positive constant this improves the corresponding bounds for arbitrary terrains by a linear factor. We prove that similar bounds cannot be proven for Delaunay triangulations: these can have river networks of complexity Θ(n).
منابع مشابه
I/O-Efficient Flow Modeling on Fat Terrains
We study the flow of water on fat terrains, that is, triangulated terrains where the minimum angle of any triangle is bounded from below by a positive constant. We show that the worstcase complexity of any path of steepest descent on a fat terrain of n triangles is Θ(n), and that the worst-case complexity of the river network on such terrains is Θ(n). This improves the corresponding bounds for ...
متن کاملA Survey on Complexity of Integrity Parameter
Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملSimple I/O-efficient flow accumulation on grid terrains
The flow accumulation problem for grid terrains takes as input a matrix of flow directions, that specifies for each cell of the grid to which of its eight neighbours any incoming water would flow. The problem is to compute, for each cell c, from how many cells of the terrain water would reach c. We show that this problem can be solved in O(Scan(N)) i/o’s for a terrain of N cells. Taking constan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Geom.
دوره 43 شماره
صفحات -
تاریخ انتشار 2010